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macromolecules formed. A kinetic model has been developed that considers, 
apart from the ordinary addition of single monomer units to a propagating chain, the possible addition of 
monomer unit pairs along with a complexing agent in the form of a ternary complex. Within the 
framework of this model, the problem of calculating the probabilities of formation of any sequences of 
monomer units (taking into account their microtacticity) in a macromolecule has been rigorously solved 
as well as the problem of finding the composition distribution of the copolymer formed. It has been 
shown that thisdistribution isdescribed by a conventional Gauss law and theappropriate parameters are 
given. Possible generalizations of the suggested approach are indicated. 
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INTRODUCTION 

The problem of the participation of molecular complexes 
of monomers in the propagation reaction during radical 
polymerization is of principal importance for understand- 
ing the mechanism of the reactions involved. The use of 
the effects induced by complexing agents in many cases 
permits control of the rates of polymerization and the 
structure of the resulting polymers’,*. In particular, 
interesting possibilities are found in copolymerization, 
when, by varying the concentrations of the complexing 
agents, one can obtain regular alternating copolymers 
instead of statistical ones. 

Until recently, the participation of molecular com- 
plexes in radical copolymerization was either postulated 
from their presence in the reaction mixture3-5, or at best 
it was determined by analysis of the kinetic features of the 
polymerization6*7 or of the average composition of the 
copolymer . ‘9’ It is believed that the participation of 
molecular complexes in a polymerization affects the 
conligurational structure of the resulting macromo- 
lecules, including the distribution of monomer units and 
the stereochemical structure of copolymer chains. If the 
appropriate quantitative theory describing the relation 
between the parameters of the polymer configurational 
structure and the kinetic mechanism of the chain pro- 
pagation reaction is available, line details of the me- 
chanism and the kinetics of chain propagation can be 
found using data on chain microstructure (e.g. obtained 
by n.m.r.). 

In addition, such a theory could be useful in choosing 
the conditions of synthesis of copolymers with certain 
optimal properties. It has been shown, for exampleg, that 
glass transition temperatures of equimolar statistical and 
alternating copolymers of a given pair of monomers can 
differ considerably. On the other hand, a simple cor- 
relation has been found experimentally”, permitting the 
determination of the glass transition temperature, T,, of a 
random copolymer from the known glass transition 
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temperatures T,, and T,, of the homopolymers M, and 
M2, that of the alternating copolymer T12, and the 
fractions of diads P(ti,til), P(M,M,) and P(n?,n?,). If 
there were a theory for calculation of the fractions of 
diads, it would be possible to relate the conditions of 
copolymer synthesis to its T,, 

A theory of this kind has been developed, rigorously 
substantiated and reliably supported by experiments for a 
variety of classical radical copolymerization systems, 
when, in the course of propagation, monomer units add to 
macromolecules only one-by-one. It has been shown that 
any statistical characteristics of the resulting copolymers 
can be calculated in a routine way by means of a well 
developed mathematical procedure based on Markov 
chain theory . 1 l, l2 Here, the fraction of macromolecules 
with a given sequence of units in a copolymer equals the 
probability of formation of the appropriate Markov 
chain. The parameters of the latter are simply connected 
with the relative activities and with the composition of a 
monomer mixture. The above-mentioned Markov chain 
statistics will be of the first, second, etc., order depending 
on the kinetic model (ultimate, penultimate, etc.) describ- 
ing a given system. 

The purpose of the first section of this paper is a similar 
statistical description of the products of complex-radical 
copolymerization, when as well as the single addition of 
monomers to the chain, their addition to its end in pairs is 
possible in the form of a molecular complex M,M2. In 
this case the kinetic scheme of a propagation reaction can 
be represented as: 

AI +M2 k’ZA,+h7, 

A,+Ml 
k 

+A,+al 



A 2 + M  2 k22 .... , A2 + ]VJ 2 

AI + M I M  2 k";, ~A2_FM1M 2 

AI + M 2 M  1 k*2 ,A l  +]~2]~l 

A 2 + M I M  2 k'~l ~A2+MIM2 

A 2 + M 2 M  1 k'~2~AI+M2M1 
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(1) 

(2) 

where A i is an active centre corresponding to a free 
valence of the polymer radical terminating with a mo- 
nomer unit M r The dependence of the instantaneous 
composition of the copolymer ~3' 24 and of the fractions of 
different triads and blocks of monomer units in macromo- 
lecules 15 on the concentrations of monomers in the 
system has already been calculated within the framework 
of the kinetic scheme of reactions (1) and (2). The 
probability approaches ~5 for calculations of the above- 
mentioned statistical characteristics have a limited impor- 
tance compared to the general statistical method sugges- 
ted in this paper. Using this method, complete calcu- 
lations of the sequence and compositional inhomo- 
geneities of the copolymer have been performed. The 
second section of the paper gives a detailed description of 
the configurational statistics of monomer units in the 
copolymer taking into account their mutual stereoconfi- 
gurations, i.e. tacticity of the polymer chain. 

The analysis of the kinetic equations of the 'classical' 
copolymerizat ion, described by reactions (1), has shown ~ 2 
that the distribution of the units h41 and M2 in the 
products is characterized by Markov statistics. A similar 
analysis of a copolymerization with simultaneous re- 
actions (1) and (2) leads to the conclusion that the 
distribution of the units -M1 and/~f2 in the polymer chains 
cannot be described by means of a Markov chain of any 
finite order. Hence, we are dealing with a non-Markovian 
copolymer. The general theory for this case does not exist 
except for various simple relations between probabilities 
of some selected sequences, following from the conditions 
of statistical stability of a random walk along the 
copolymer chains ~6. These conditions practically always 
hold, except for oligomers, and therefore are also used 
here. 

CALCULATION OF UNIT DISTRIBUTION AND 
C O M P O S I T I O N  I N H O M O G E N E I T Y  OF THE 
COPOLYMER 

The general problem of the calculation of sequence 
distributions in a copolymer is reduced to the con- 
struction of an algorithm for calculating the probability of 
a random selected sequence Uk, consisting of any number, 
k, of monomer units. For non-Markovian copolymers, 
this problem has been solved only for the products of 
polymer-analogue reactions 17,~z. Here we give its so- 
lution for copolymers obtained by a complex-radical 
mechanism by means of some auxiliary Markov chain 
with four states S 1, $2, S 3 and $4. To introduce these 
states, we distinguish monomer units as 'coloured' black 
and white. This conditional colouring is a demonstrative 

procedure permitting us, while considering sequences of 
monomer units, to distinguish besides their type t h e  
manner of their adding to a polymer chain. The unit M i is 
black if the corresponding monomer Mi is added to the 
radical as the first monomer of the complex. In other cases 
when the corresponding monomer M i is either added 
alone or as the second monomer of the complex, the 
monomer unit M~ is white. Now the states of the monomer 
unit are characterized by two features: its type (i= 1,2) 
and its colour (white or black). For  example, we consider 
that the unit is in the state S 1 if it is of the first type and 
white, i.e. -w M 1. All other states S i are defined similarly: 

~ M I ,  "-~M z, S 4 ~ . ~  (3) $1 -w S2~M~, S3 -w 

In a real polymer chain, each monomer unit has no 
memory about the manner of its adding to a macromo- 
lecule. It is characterized only by its type, and from this 
point of view is uncoloured. Therefore, experimentally 
determined characteristics of the copolymer microstruc- 
ture are described by a sequence of uncoloured units. 
Hence, it is clear that each state .h~ i of the sequence of 
'uncoloured' units is a combination of the corresponding 
pair of states of the sequence of the 'coloured' units, i.e. 
J~fl =$1 +$2,/~f2 =$3}-$4 • 

If a method similar to that of Kuchanov ~2 is applied to 
prove the Markovian character of the statistics of the 
classical copolymerization products, it is possible, pro- 
ceeding from the kinetic equations of the scheme (1)-(2), to 
prove rigorously that a sequence of 'coloured' units in 
macromolecules forms a Markov chain with the states Sx, 
S 2, S 3, S 4 and a transition matrix: 

Yll Y12 VI3 Y14 
0 0 1 0 Q= 

Y31 Y32 1"33 Y34 
1 0 0 0 

Q2~/ 

(4) 

The non-zero and non-unit elements of this matrix: 

vl l = M l k l l A 1  l, , -1 =M2k12A~-i v12=M12kllA1, v13 
vl4=M12k*2A1 l, v31=Mlk21A2 1 , va2=M12k~lA21 
v33=M2k22A2 1, Va4=M12k*EA2 l, 
A1 = M l k l l  +M2klE-I-MiE(k*l +k~'2), 
A2 =MikE1 + M2kE2 +Ml~(k~l +k2"2) (5) 

are functions of two dimensionless variables characteriz- 
ing the composition of a ternary mixture (two monomers 
and t heir complex with concentrations MI,  M2 and M12, 
respectively). These functions depend on six dimension- 
less kinetic parameters of relative reactivities. They can be 
the following: 

kll  k22 kll 
r12----~l 2, r21 - - - - ,  r ~ l = - -  

k21 k~l' 

kll  k22 k22 
r~'2 = k~'--~' r~l = k ~ '  r~2-  k*2 

(6) 

It should be emphasized once more that a sequence of 
'uncoloured' units -M1 and M2 is not a Markovian 
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random process, but its statistical characteristics can be 
expressed in terms of transition probabilities (5) of an 
auxiliary Markov chain. For example, the components n~ 
(i = I, 2) (equal to molar fractions of the ith type units in a 
copolymer formed just at a given instant) of the vector n of 
instantaneous copolymer composition, according to (3), 
are simply connected with the components ~ (i = 1, 2, 3, 4) 
of the limiting vector of this chain: 

7~ 1 ~--- 7~ 1 -Jr- ~ 2 ,  7~2 = 7~3 +/~4  (7) 

The routine calculation tx'~2,ls of the vector n of the 
matrix (4) gives the values of its components: 

7~ 1 -~- (1131 -Jr- Va4.)A- i, 7~ 2 = [VlaV32 +V12(1 -- v a a ) ] A -  1, 

7~ 3 ~--- (1/12 + V I 3 ) A - I ,  ~4.=[ValVI4.+V34.( 1 __VlI) ' ]A- 1, 

A=v13(1 +va2)+v31(l +vl~)+v12(2-va3)+va#(2-v11) 
(8) 

Substitution of the latter into (7), taking into account (5) 
and (6), leads to a known expression ~3'14 relating the 
instantaneous copolymer composition to the concen- 
trations of the monomers and of the complex. The latter 
can be expressed in terms of Ms and the equilibrium 
constant k by 

M12 = kM1M2 (9) 

Substitution of (9) into (5) leads to expressions for v o. The 
latter are determined not only by the relative content of 
monomers in the mixture, 0=  M2/M1, but also by their 
absolute concentrations. Therefore, for the complex- 
radical copolymerization, in contrast to the classical one, 
the copolymer composition depends also on the values of 
these absolute concentrations. The probabilities 
p{~r ~rj} of all diads MiM~ can be written with the known 
values of 7~ i (see equation (8)): 

P{/~I-A~'I } = 7~1 (Vll + Vl 2 )' 

P{J~f 1./~2} = ~l(Vl 3 -I- via.. ) -I- ~ 2, 

P{  J~f2/~¢ 1 } = ~3 (V31 '+ V32) -I- ~4,  

=  3(v33 + v34) (10) 

It is easy to verify that P{M1M2}=P{M2Mt}  as it 
should be due to the statistical stationarity of a ran- 
dom process. Formulae (10) are derived from simple 
statistical considerations. Thus, the diad MIM ~ is ob- 
tained if, in the process of an imaginary movement along 
the copolymer chain, the first unit is in the state S 1 (with 
probability if1) and at the next step a transition from S~ to 
the states St or $2 occurs (with probabilities vll and vi2, 
respectively). The diad MtM 2 can be obtained in three 
ways: either when the first unit is in state S: and the 
transition proceeds into S 3 or S,~, or when the first unit is 
in state $2, when the next unit for certain is M2. The other 
two relations (10) are derived in a similar way. 

Let us now give the general algorithm for the calcu- 
lation of the probability , P{ U.}, of any given kind of 
sequence: 

U n = M i l M i 2  ... IVli n 

consisting of n monomer units. This sequence is un- 
ambiguously defined by the n-dimensional vector i, its 
components being integers 1 or 2. The sequence of states 

can be defined similarly by means of the vector j, with the 
integer components from 1 to 4. The sequence of 'uncol- 
oured' units can be obtained from a set of sequences of 
'coloured' units by their combination, according to con- 
ditions (3). Thus, P{ U,} is, evidently, equal to the sum of 
the probabilities of all sequences V, having $1 and $2 
instead of M 1 in the appropriate places and $3 and $4 
instead of M 2. Hence 

P{MqM,2 ....VI~,,} = ~  P{SI1S)2... Sin } (11) 

where the summation is carried out using the vectors j 
with each kth component being 1 and 2 in the case i k = 1 or 
3 and 4 in the case i~ = 2. Since the sequence of coloured 
units forms a Markov chain we have: 

P{SjtSi2... Sl. } = £~j.v:a vja ... vj._a" (12) 

and therefore formula (11) can be written in the matrix 
form 

P{MilM~2 ...-Mi.} = ~tq)Qqi2Q~2~ 3 "" Qi._ v. 1T (13) 

where 
1={1 ,1}  

are two-element row vectors, 1 T is the transpose of 1, and 
Qu are second-order matrices: 

o, o,, 

0 ] '  Q22= (14) 

It is interesting to note that formula (13) resembles (12) in 
its structure, but in contrast to (12) contains matrix factors 
(14) (instead of scalar factors) which are submatrices for 
the matrix Q (equation (4)). 

Relation (13), taking into account (8) and (14), permits 
calculation of the probability of a given sequence, U,, of 
monomer units and thus completely describes their 
distribution in the copolymer obtained by the complex- 
radical mechanism. As an example of use of formula (13), 
we give expressions for fractions of all triads of h4~ units, 
obtained using this formula: 

P{MIMIMt} = ~lVl 1(V11 +V12), 
p{A]rl M 1A~t2} = P{M2M1M 1 } = (7~3v31 -Jr- 7~4.)(v11 -[-- v12, 

P{MIM2M1} = (~1v13 + 7~2 )(V31 "+- V32) "+ ~1V14' 

P{M2MtM2} = (Tt3v31 + r~a)(v 13 + Via) + ~3v32, 

P{MIM2M2} = P{M2M2Mx} = (~,v13 + ?~2)(P33 + v34), 

P{M2M2M2} ----- ~3Y33(V33 -'1- v34 ) (15) 

Experimental measurements of triads, for example by 
high-resolution n.m.r, with different concentrations of 
initial monomers and of complexing agent allow, pro- 
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ceeding from formulae (15) and taking into account (5), (8) 
and (9), assessment of the adequacy of the kinetic model 
(1) and (2) and evaluation of its parameters (6). 

As an example of the applicability of the general 
algorithm for calculations of probabilities of any se- 
quence, one can give formulae obtained on the basis of 
(13) and (14): 

P{M2M"xM2} 
f u(1)(n) = p{j~2]~tl } 

= (Tg3V31 -t- 7~4)(Vll + V12)(1 - -Vl l  ) 

7~3 (V31 "3t- Y32) "[- ~4 

P{M1M~Mt} 
P{M1M I 

n-2 
Vl l  

(~1vl a -4- ~2)(vaa + va4)(1 - Y33 ) ~'~3 2 (16) 
7[ I(V 13 -JV V 14) "~- 7~2 

for the function of the number distribution f~0 according 
to lengths of the i type monomer unit blocks. 

One of the main problems of the statistical description 
of copolymers is the calculation of their compositional 
inhomogeneity. In our case this is determined by the 
fraction (1 of monomer units M1. Since the chain length (l) 
of the copolymer in question is sufficiently high, the 
variable (1 can be continuously varied from 0 to 1. It is 
expressed in a simple way (1 =Ca +~2 by fractions ~i of 
'coloured' monomer units Sv Since a sequence of these 
units forms a Markov chain with a transition matrix (4), 
the variable (x at large l being asymptotic normally 
distributed, similar to that describing inhomogeneity of 
the products of the classical copolymerization TM 17. Ho- 
wever, in the case considered here, the parameters describ- 
ing this inhomogeneity, i.e. the average composition n and 
the homogeneity index of sequences (D), are calculated in 
a different way. The former is found by formula (7) and the 
latter by the following formula: 

D = / ) 1 1  "[-/~12 4- J~21 -Jr"/~22 (17) 

where/gij are indices of homogeneity of sequences in the 
chain of coloured units. The quantities/~i o are calculated 
in a routine way TM 18 as this sequence is a Markovian one. 

The kinetic model (1)-(2) considered in this paper has 
six independent parameters (6) and is a generalization of 
the two-parameter model of the classical copolymeri- 
zation (1). For the determination of r 1 and r 2 in the latter 
model, it suffices to measure only the dependence of the 
original composition of the copolymer on the monomer 
feed, whereas more experimental information is required 
for the evaluation of the six parameters (6). This infor- 
mation can be obtained by studying the copolymer 
microstructure, e.g. by n.m.r. The treatment of experimen- 
tal data on the proportions of different triads of monomer 
units in copolymers permits, in accord with formulae (15), 
evaluation of the set of relative activities (6). To verify the 
adequacy of the model (1)-(2), it is necessary to measure 
the microstructure of copolymers obtained at different 
ratios of monomers in the initial mixture and at different 
values of their absolute concentrations. 

COMPLETE DESCRIPTION OF THE 
COPOLYMER CONFIGURATIONAL STATISTICS 
WITH CONSIDERATION OF ITS TACTICITY 

Let us now consider a more detailed description of the 
microstructure of a copolymer (taking into account its 
tacticity). While choosing a kinetic scheme generalizing (1) 
and (2), it is assumed (similar to the description of the 
tacticity of homopolymers 19) that the probability of a 
certain mutual configuration of substituents of a pair of 
adjacent units does not depend on the configurations of 
other units. The probability 6j (or 1 - fii) that the second of 
a pair of configurations after addition of a complex will be 
isotactic (i) (or syndiotactic (s)) is determined only by the 
type of monomer Mj in the complex which is the first to 
add to the polymer chain. 

Since each pair of adjacent monomer units in a 
macromolecule is characterized by a certain type of i or s 
of its mutual configuration, a fragment of the copolymer 
chain can be presented schematically in the form 
MliM2sMxiM 1 . For a complete statistical description of 
the configurational structure of such a copolymer, it is 
necessary to construct an algorithm for the calculation of 
the probabilities P{U,} of arbitrary sequences U, of 
monomer units with respect to way of alternation of units 
and their stereoconfigurations. Two cases (I) and (II) will 
be considered within the framework of the kinetic model. 
In (I), the mutual stereoconfiguration of substituents of 
terminal and preterminal units in a macroradical is 
assumed to be fixed, while in ill) free rotation of the 
propagating radical end around a carbon-carbon bond 
occurs. In (II), probably realized more frequently 2° in 
radical copolymerization, the configuration of the ter- 
minal pair of monomer units remains uncertain until the 
addition of the next monomer or complex. However, in 
the polymerization of some monomers (for example, 
methyl methacrylate 21) it is possible that the end of the 
propagating radical cannot rotate freely due to the height 
of the corresponding energy barrier. Evidently such 
systems belong to case (I). 

Taking into account the assumption concerning the 
mechanism of the chain propagation reaction, one can 
derive the kinetic scheme involving both of the above- 
mentioned cases: 

~ A i +  

Az+Mj ] k~ 1 ' A  j+ 

k*iA 2 
] l l" l ,A + 

I k~'(1,-&0 A2 + 
AI+M1M2 [k?(6t A2 + 

k~t~2, A1 + 

kt~(1 -b2)  AI 
AI+M2Mx~ ~ + 

kt262, A 1 + 

[ k~2S(1,-62)A1 + 

(I) (II) 

M~iMj XiM~xMj 

M~sM j XsMtxM j 

M~iMliM2 XiMtiMlxI(t~ 

MliMxsM 2 XiMtsMlxlQ 2 

MtsMtiM2 XsA~'liM 1 x/~ 2 

MtsMlsM12 XsMlsMlxIVl 2 

MtiM2iM1 XiMziMEXlQ 1 

/~/iMESM 1 XiMlSMEX]~.l I 

MIsM2iM1 XsM~iM2x.('I 1 

MzSMESA4t I XsMtSMEXIVI 1 
(18) 

x is any of their where X is any of the units M1 o r  A,~ 2 and 
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stereoconfigurations i or s, The M~ units in the polymer 
chain are 'coloured' as above. Then an auxiliary Markov 
chain with the states S~ (i= I, 2 ..... 8) is constructed, the 
lat~er are chosen in different ways for the cases (I) and (II) 
of the equations (18): 

S, ~ Xi.~;,  $2 ~ Xs.~/~, $3 ~ X i , ~ ,  S, ~ XsM~, 

(I) (19) 

$5 ~ Xi2~7/~, $6 ~ XshTPL $7 ~ XiM~, $8 ,-, XsM b ; 

The fixed probability vector ~' of the matrix (21) is 
calculated as (8) in a routine way. Its components ffl 
(i= 1,2 ..... 8) due to relations (22) and (23) can be 
expressed by the corresponding components ff~ of the 
fixed probability vector of the matrix (4) and the com- 
ponents of the matrix (21): 

~l=~IVll+~3V51+~,62,  

~2=~lV12+~3V52+~4(1 --62), 

(II) 

St ~ XiXxl~ l ,  S2".. X s X x ~ ,  Sa ~ XiXxIV1 b, 
S4 "." XsXx~-l~,  

(20) 
S s ~  XiXxKI~2, S6~ XsXx~l~2, ST~ XiXx]Vlb2, 

Sa ~ XsXx.~P2 

Proceeding from a system of kinetic equations cor- 
responding to the equations (18), one can rigorously show 
that a sequence of the S~ states actually forms a Markov 
chain. Note that the probabilities of this random process 
are similar for both cases (I) and (II). The difference 
between them is exhibited in the expressions for the 
probabilities of actually observed sequences of the 
monomer units M ,  taking into account the stereocon- 
figurations of their substituents via the probabilities of the 
corresponding sequences of the S~ states of the Markov 
chain with a transition matrix: 

-Vll 

V21 

0 

0 Q= 
V51 

V61 

VT1 

V81 

VI2 V13 VI4 V15 V16 VI7 V18- 

V22 V23 V24 V25 V26 V27 V28 

0 0 0 v35 v36 0 0 

0 0 0 v4s v46 0 0 

V52 V53 V54 V55 V56 V57 V5S 

V62 Y63 ' V64 V65 V66 V67 V68 

V72 0 0 0 0 0 0 

V82 0 0 0 0 0 0 

(21) 

obtained from the matrix (4), replacing each element of (5) 
by a square matrix of the second order with similar rows: 

Mr, ^ - a  fM,k~,A; z M,k~,Aj-"~ 
z'~j,~j "-* \M,k}lA]- 1 Mz j,kS A j- 'l'/ 

Mt2k~Af L-'(Mi2k)~iAf 11 M'2k~SAf,~ - 11"~ (22) 
LM12k~lA; Mt2kj, Aj ,] 

where Aj are the same as in (5) if one designates 
kj, = k~, + k),, k~ = k~i+ k~ ~. Null elements of the matrix (4) 
are transformed into null matrices, while the unit elements 
corresponding to the transitions from .~rb to M~2 and from 
M~ to ~ are transformed into: 

1-61,] \v45 v46/ 

1....~(66: 1--~2x~ = (  VT1 V72"~ 
1 - 6 2 J  \%1 v82J 

(23) 

~3=~1V13 +~3V53, 

~4 --~ 7~lVt4 + 71731/54, 

~5=~lV15+~261+~3V55, 

~6=~lV16+~2(1--61)"[-~3V56, 

~7=~1V17 +~3V57, 

(24) 

Here, naturally the following relations hold: 

ffl = n~l "q- n2, 7~2 ~--- 7~ --I- n4, if3 = n5 "~- n6, ~4 = 7t'7 -'[- ~8 
(25) 

The values r~i allow, for example, one to find the fraction of 
monomer units entering a macromolecule via addition of 
complex. This fraction is 2(ff~ + ff~ + r~ + ff~). 

The Markov chain with the matrix (21) is always 
lumpable with respect to a partition ~ r ~ = S t + S  2, 
h4 b = $3 + S,~, ~ = $5 + $6, M~ = $7 + $8, introduced in 
the first section of this paper. The transition matrix of the 
lumped chain, naturally, coincides with (4), i.e. all for- 
mulae given above describing the statistics of the sequence 
distribution, irrespective of their mutual configurations, 
remain valid. Hence, this fundamental property, pre- 
viously known in the theory of the classical copolymeri- 
zation, has been generalized for the scheme (18). 

General formulae permitting calculation of the pro- 
bability of an arbitrary sequence of units with given 
stereoconfigurations are derived from the same con- 
siderations as for (13). However, now they have a different 
form depending on which case (I) or (II) of the scheme (18) 
is realized in the polymerization. For demonstration, we 
give a derivation of expressions for the probabilities of 
diads. The stereoconfiguration of units in a diad will be 
designated with tl corresponding to iso- and t2 to syndio- 
configuration. Then in the case (I) we obtain 

P{-~ljtjglk} = Z r~;v,,, (26) 

where summation is carried over indices l and m with 
l = 1,2, 3, 4 or l = 5, 6, 7, 8 when j = 1 or j = 2, respectively, 
and the index m has the values m=  1,3; m=2,4 ;  m=  5,7; 
m=6,8,  when ~=1,  k = l ;  ct=2, k = l ;  a t=l ,  k=2 ;  ~=2,  
k = 2, respectively. In the case (II) we similarly obtain from 
the scheme (18) 

e{1QI fl,-IVlk} = Z ~;v,,,vm, (27) 

respectively. where 1 runs over the values 1,2,3,4 when j =  1 and 
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5, 6, 7, 8 when j = 2; m runs over the values 1, 2, 3, 4 when 
k = l  and 5, 6, 7,8 when k = 2 ;  while n=1,3 ,5 ,7  or 
n=  2,4, 6, 8 when at= 1 or :t = 2, respectively. Since the 
functional dependences of ~'~ and v~,, on monomer con- 
centrations are similar for both cases (I) and (II), there is a 
possibility of distinguishing between these cases in experi- 
ment (due to the difference between formulae (26) and (27)) 
by studying dependences of fractions of different diads on 
the concentrations M 1 and M 2. 

The case of an alternating regular polymer, formed at a 
sufficient concentration of complexing agent in the sys- 
te_m, is of special interest, since the distribution of the units 
M 1 and M 2 in all macromolecules of such a copolymer 
has the form ~ M1M2MIM2M 1 ~.  Here, as in the case of 
homopolymer, macromolecules, in addition to the degree 
of polymerization, differ only in the sequence of 
stereoconfigurations of monomer units. However, while 
describing tacticity of alternating copolymers, one finds 
considerable differences in comparison to homopolymers, 
because of the necessity of distinguishing sequences U, of 
configurations by the types of the initial and terminating 
monomer units bordering U,. Thus, the diads MliM 2 and 
M2iM 1 have different probabilities, although they are 
indistinguishable in experiment. The same concerns 
MlSM 2 and M2sM 1 and also the pairs of triads 
MliM2sM x and .~aSMEiM1, M2iMlsM 2 and 
M2SMliM 2. Spectroscopic measurements permit de- 
termination of only P(i)= P{M~iM2} + P{./~r2ih41} and 
also the quantities P(MtiM2sM1)=P{MliM2sMa }+ 
P{M__ lS/~2i_h,ll} and P(MziMxsM2)=P{.~2i.Mls]~t2} + 
P{M2sMliM2} separately. A sum of the last two quan- 
tities P(is) gives together with P(i) = 1 - P(s), the coefficient 
of microheterogeneity 

KM = P(is)/2P(i)P(s) (28) 

The equality of the latter to unity is a necessary condition 
for the description of the tacticity of an alternating 
copolymer by Bernoullian statistics. 

It is interesting to find the relations between kinetic 
constants which independently of monomer concen- 
trations give KM= 1. As the analysis has shown, these 
relations are: 

k)k/kjk -t'*in'*-'~ik/'jk--Sx = 8 2 = a  ( j=  1,2; k =  1,2) (29) 

In the framework of the considered kinetic scheme (18), 
the latter are found to be sufficient conditions for a 
description of copolymer tacticity by a Bernoullian 
scheme with parameter a. It is of interest that when (29) 
does not hold the copolymer tacticity cannot be described 
by a Markov chain. However, at some ratios between the 
kinetic parameters, 'pseudo-Bernoullian' statistics are 
possible with two parameters of alternation of stereocon- 
figurations 012 and 0.21, when the probabilities 0.~s of the 
isotactic arrangement of substituents in adjacent units 
MiM j do not depend on their environment along the 
chain. These relations are 

81 =kil2/kl2 _ / . , i / b *  82 =ki21/k21 - b *  i / b *  - n . 2 1 / ~ 2 1  - ~ .12 /~ .12 ,  

(30) 

The parameters o"12=61, 0 " 2 1 = 6 2  in the case (I) and 
0.12=62, 0.2a =61 in the case (II). 

DISCUSSION AND POSSIBLE 
GENERALIZATIONS OF THE MODEL 

Hirai et al.  22 have shown the non-Bernoullian statistics of 
stereoconfigurations using n.m.r, studies of the tacticity of 
alternating copolymers of methyl methacrylate (M 1) and 
s t y r e n e  ( M 2 )  obtained in the presence of different com- 
plexing agents. To explain this fact, they suggested a 
mechanism of polymer chain propagation based on two 
assumptions: 

(1) Only one radical type (A1) is present in the system 
and hence monomers are added only in the form of a 
complex. 

(2) The fixing of a pair of stereoconfigurations, as a 
result of complex addition, occurs one after the other, the 
probabilities a~ I and 0.~1 of iso-diad appearance with the 
second bond will vary depending on the first bond's 
stereoconfiguration (i or s), and the probability 0.1 of the 
latter does not depend on the tacticity of the radical 
terminal pair of units. 

Stereocontrol in the framework of such a model is 
attributed by the authors 22 to Markovian statistics of the 
first order, although, rigorously, the sequence of 
stereoconfigurations is a superposition of these statistics 
and Bernoullian statistics. However, the interpretation of 
experimental data obtained22 on the basis of this model is 
not unique. We shall show that these data do not 
contradict the results obtained proceeding from the 
present kinetic model (18). 

The values of probabilities (fractions) of different triads 
were found 22 by n.m.r, with a high accuracy (better than 
1-2%): 

fx,=2P{I~t2sMxsM2}, fz,=2P{M2iM,iM2}, 
fy, = 1 - f x , - f z , ,  

fxz=2P{M,sM2sM,}, fzz=2P{MtiM2iM,}, 
fY2 = 1 - A 2 - f z 2  

(31) 

and the values of the parameters 

D, = f 2  _ 4 fx, fz ' (i = 1,2) (32) 

are calculated using them. In particular, it was found in 
the system where EtBCI2 was taken as a complexing agent 
and at the temperature -20°C 

f11=0.36, fzl=0.18, fv1=0.46, D1=-0 .048 ,  

f12=0.29, fz2=0.11, fv2=0.60, D2=0.232 
(33) 

In addition, it was found 22 for different systems where an 
alternating regular copolymer is formed that the pro- 
babilities of triads satisfy the condition 

fx, -fx2 =fz, -fz2 (34) 

The data of 22 convincingly show the inapplicability of 
not only the routine Bernoullian single-parameter statis- 
tics, but also of two parameter 'pseudo-Bernoullian' 
statistics, since in both cases it follows that 
D 1 = 0 2 = D 1> 0 with the equality corresponding to the 
first case. As it is seen from (33), D 1 and D 2 e v e n  have 
different signs. For explanation of their experimental 
data, Hirai e t  al .  22 suggested a more general three- 
parameter kinetic model, the main assumptions of which 

POLYMER, 1984, Vol 25, January 105 



Configurational statistics of copolymers: S. L Kuchanov et al. 

were given above. As one of the main arguments in favour 
of the adequacy of this model, they state that the relation 
(34) follows from it. However, as the theoretical analysis 
developed by us has shown, this relation holds for any 
alternating regular copolymer independently of its me- 
chanism of formation. At the same time, experimental 
values of triad probabilities (31) for the corresponding 
choice of the kinetic parameters can also be calculated 
within the framework of models differing from that 
suggested. In particular, a kinetic model corresponding to 
case (I) of the scheme (18) gives an alternating copolymer 
with the triad probabilities (33) for the values of the matrix 
parameters (21): 

1,'15 =V25 =0.232, 
Vls=V2s=0.678, 
V53 = ~'63 = 0.305, 
1~36 = V46 = 0.305, 

VI6=V26-----0.084, 
VS1=V61=O.032, 
VS4=V64=O.112, 
V71=Vax=0.625, 

Vl 7----- V27 = 0.006, 
"¢52 =V62 ~--- 0.551, 
v3 s = v4s - 0.695, 
V72 =V82 = 0 . 3 7 5  

(35) 

and the other v 0 = O. 
Note that our model (18), similar to the model pro- 

posed, leads to essentially non-Bernoullian statistics of 
stereoconfigurations. However, the reasons causing it are 
quite different in both models. According to the latter 
model, the reason is the mutual dependence of a pair of 
stereoconfigurations, formed during the addition of the 
complex, and in the second one the reason is a mixed 
mechanism of adding single monomers and pairs of 
monomers to a polymer chain with the condition that all 
stereoconfigurations, formed during the addition of 
the complex, and in the former the reason is a mixed 
as a complex according to model (18) with the values of 
the parameters in (35) is 0.742, while in the proposed 
model 22 it is unity. Since both models explain equally well 
the stereocbemical data obtained in ref. 22, their adequacy 
in describing the true mechanism of the propagation 
reactions at alternating radical copolymerization can be 
settled only after additional experimental studies. 

A general kinetic scheme can be considered, which 
involves both above-mentioned models as particular 
cases. For  this the constants k~ ii, k~ is, k~ si, v,~ ~,; must be 
introduced into scheme (18) instead of the reaction rate 

1..i z.., and the probabilities ~1,~2 independent constants "0,  -,lj 
~o f k~ i. and k~'. For example k~'l is is the rate constant of the 

urth reaction ol scheme (18) when the complex is added 
to the radical by the monomer M1 with the first and 
second bonds, respectively, fixed in iso- and syndio- 

configurations. One may show that with an appropriate 
choice of a larger number of states S~ some Markov chain 
for their sequence is again obtained. The model 22 follows 
from this general kinetic model if one assumes that all 
constants are zero except b*ii /.,is b,si b,ss which are n,12, r~12, n, 12, n,12 
related to the parameters of the model 22 by the simple 
relations: 

k,ii /..,is 

k?2 k~2 

k,si ,~  
12 =(l_trx)a(~), kl_._L=(l_al)( l_dl))  ' 

k~' 2 k* 2 

(36) 

where k~2 - b*ii -L/..*is -L b* si A- b* ss -- n,12 Tr~12 Tn,12 Tn,12 
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